压气机的气流来自于战机飞行,战机飞行的时候,飞行的速度和高度,决定了进入压气机气流的多少,就造成了‘气流输入端’的不稳定。

        飞行状态和发动机转速的不断变化,压气机也必须要承受不断的变化,气流进入越快越大,也就是战机的速度越快越快还好,减速的时候遇到的问题更大,气流强度的减少导致压气机转速减低,内部的增压比跟着降低,前面几级的压强降低还不显著,后面的压强降低就比较多了。

        这时候就出现了问题。

        压强降低,气体体积就变大,压气机后面几级的气流通道就显得“太小”了,流通不畅,气流被堵住而不能全部排出去,叶片的工作也就不正常。

        于是气体压强发生脉动式的忽高忽低的变化。

        当进入压气机前几级的气流向后流动时,如果后面通道被堵塞而不能全部流过,则气流会往前倒流,倒流使后面的气流通道被疏通,空气气流又被吸入压气机,向后流时又被堵塞,又向前倒流……

        如此反复变化,气流在压气机里来回窜动,并以忽大忽小、不稳定的压强和速度从出口流出去。

        这种就是发动机的“喘振”问题。

        “喘振”发生的时候,会伴有涡轮前燃气温度突升和巨大的声响,内部叶片损坏还是小问题,严重一些会造成发动机直接熄火。

        赵奕着手去解决压气机问题时,第一个要研究的就是“喘振”问题,相对于压气机的性能来说,稳定性要重要的多。

        这就像是一个算法运行,算法的效能再高,到处都是bug,根本运行不起来,也是没有意义的,只有解决了bug问题,才能进一步去提升性能。

        内容未完,下一页继续阅读