首先引入一个级数S,S=1-1+1-1+1-1+1......,然后换算1-S=S,得出S=1/2。
再引入级数M,M=1-2+3-4+5-6+7......,通过错位代入计算得出2M=S,M=1/4。
最后引入所有自然数的和N,利用N-M的错位计算,最终推导出N=-1/12。
“大家都看到了,从证明过程来看,似乎是没有什么问题,但实际上从开始计算s值时,就是错误的。”
“S是发散级数。在无穷级数中,只有绝对收敛的级数才可以重新排列各项而不改变收敛的值,也就是说,对于非绝对收敛的无穷级数,不能任意更改求和次序。”
“而这也就是黎曼级数定理,也叫黎曼重排定理。”
胡志斌随意发挥的讲课,确实是很有意思的,连一部分睡觉的同学都被吸引了,他们还是第一次发现,高数的胡老师,讲起数学来竟然这么有意思,而不总是刻板的讲书里的知识点、做习题等等。
同样被吸引的还有赵奕。
赵奕知道自然数的和是-1/12的证法,但他知道的是黎曼的证明方法,而不是拉马努金的错误证法。
关于所有自然数之和,欧拉早早的就提出结果是-1/12,但过了五十多年以后,黎曼采用严格的复分析证明了其合理性。
内容未完,下一页继续阅读